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A new integrable long-range model is derived from a new asymmetricR-matrix recently
discussed by Bibikov in relation to a XXZ spin chain in an external magnetic field. The
algebraic Bethe Ansatz is used to derive the eigenvalues and equations for the eigen
momenta both for the usual and long-range model.

1. INTRODUCTION

In the theory of quantum integrable systems, quantum spin chains have always
occupied a special status, since they were amongst the first systems to be solved
exactly. Recently in a short note Bibikov (2000) has presented anR-matrix for the
asymmetrical XXZ spin chain placed in an external magnetic field. The system
was also analyzed in Albertiniet al.(1997). In terms of theR-matrix the analysis of
such a system can be accomplished using the algebraic Bethe Ansatz. TheR-matrix
obtained in Albertiniet al. (1997) presents certain novel features in the sense
that the spectral parameters on which theR-matrix depends are two-component
vectors. The inclusion of the external magnetic field within theR-matrix itself is
facilitated by assigning one component of this vector valued spectral parameter
to be proportional to the external magnetic field. In this communication we will
discuss the diagonalization problem for the asymmetric XXZ chain, which will
be useful in the derivation of a long-range integrable Hamiltonian system from
this spin system through the introduction of inhomogeneties. Such long-range
models were first obtained in Hikamiet al.(1992) for the XXZ spin system in the
absence of external magnetic fields and have also been studied in Choudhury and
Chowdhury (1996) and de Vega (1984).
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2. FORMULATION

We consider theR-matrix presented in Bibikov (2000) in a slightly different
form as

R̃(Eλ, Eµ)

=


a(λ1, µ1) eη(λ2−µ2) 0 0 0

0 b(λ1, µ1) e−η(λ2+µ2) shη 0
0 shη b(λ1, µ1) e−η(λ2+µ2) 0
0 0 0 a(λ1, µ1) e−η(λ2−µ2)


(1.1)

whereEλ = (λ1, λ2) and Eµ = (µ1, µ2) are two-component vectors and

a(λ1, µ1) = sh(λ1− µ1+ η), b(λ1, µ1) = sh(λ1− µ1)

η being a quantization parameter.
This R-matrix satisfies the Yang–Baxter equation (Korepinet al., 1993):

R̃12(Eλ, Eµ)R̃13(Eλ, Eν)R̃23(Eµ, Eν) = R̃23(Eµ, Eν)R̃13(Eλ, Eν)R̃12(Eλ, Eµ) (1.2)

It is interesting to note that Eq. (1.2) remains valid even after we introduce inho-
mogenetiesαi , βi , γi (i = 1, 2) by means of the transformationsEλ→ Eλ− Eα, Eµ→
Eµ− Eβ, Eν → Eν − Eγ . The connection with the local Hamiltonian density of the
asymmetric XXZ spin chain in presence of an external magnetic field can be made
by employing the following reduction.

Let Eλ = (λ, λh), Eν = (ν, νh), whereh is the magnetic field. Defining

R̃(λ, ν) ≡ L(λ, ν)

we have

L(λ, ν)

=


sh(λ− ν + η) eηh(λ−ν) 0 0 0

0 sh(λ− ν) e−ηh(λ+ν) shη 0
0 shη sh(λ− ν) eηh(λ+ν) 0
0 0 0 sh(λ− ν + η) e−ηh(λ−ν)


(1.3)

Now it can be shown that the local Hamiltonian density follows from

Hi ,i+1 = shηL−1(λ, ν)
∂

∂λ
L(λ, ν) |λ=ν − chη

2
I4 (1.4)

= chη

2
σ 3

i ⊗ σ 3
i+1+

hηshη

2

(
σ 3

i ⊗ I + I ⊗ σ 3
i+1

)
+ e−hψσ−i ⊗ σ+i+1+ ehψσ+i ⊗ σ−i+1 (1.5)
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whereψ = 2ην and we have writtenL(λ, ν) in terms of local operators (Eσi , Eσi+1)
which are the 2× 2 Pauli matrices. As shown in Bibikov (2000) theL operator
satisfies the standard relation of Quantum Inverse Scattering Method:

R̂(λ, µ)L(λ, ν)⊗ L(µ, ν) = L(µ, ν)⊗ L(λ, ν)R̂(λ, µ) (1.6)

where

R̂(λ, µ) = PR̃(λ, µ) (1.7)

P being the usual permutation operator satisfyingP(Ex ⊗ Ey) = Ey⊗ Ex, whereEx, Ey ∈
C. Equation (1.6) will be of crucial importance in our subsequent analysis. First it
will be noticed thatν in Eq. (1.6) plays the role of an auxillary parameter. Let us
now consider a one-dimensional lattice and assign to each site the operator

L̂(λ, νk) ≡ R0k(λ, νk; η) = 1

sh(λ− νk + η)
R̃0k(λ, νk; η) (1.8)

where the indices 0 andk refer to an auxiliary spaceVA and a quantum spaceVk

at thekth lattice site respectively. ThuŝL(λ, νk) as defined above is now defined
in the tensor product of two vector space i.e.VA ⊗ Vk. Notice that the parameterν
has now become site-dependent. We mention two properties ofR0k(λ, νk; η) which
will be frequently used in the following analysis.

(i) R0k(νk, νk; η) = P0k; (ii) R0k(λ, νk; η = 0)= I (1.9)

Next we define a transition matrix

TN(λ, {νk}; η) = R0N(λ, νN ; η) · · · R0k(λ, νk; η) · · · R01(λ, ν1; η) (1.10)

In view of the local relation (1.6) the transition matrix defined above is also inter-
twined byR̂(λ, µ), i.e.

R̂(λ, µ)TN(λ, {νk}; η)⊗ TN(µ, {νk}; η) = TN(µ, {νk}; η)⊗ TN(λ, {νk}; η)R̂(λ, µ)
(1.11)

As is well known the trace of the transition operator is a generator of the integrals
of motion and is called the transfer matrixt(λ), i.e.

t(λ, {νk}; η) = tr0{R0N(λ, νN ; η) · · · R0k(λ, νk; η) · · · R01(λ, ν1; η)} (1.12)

From Eq. (1.11) it immediately follows that

[t(λ), t(µ)] = 0 for allλ, µ (1.13)

We are now in a position to derive the eigenvalue of the transition matrix, using
algebraic Bethe Ansatz.
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3. ALGEBRAIC BETHE ANSATZ

Let us write the transition matrix in the following form:

T(λ, {νk}; η) =
(

AN(λ) BN(λ)
CN(λ) DN(λ)

)
(2.1)

Then from Eq. (1.11) we pick up the following two commutation relations:

AN(λ)CN(µ) = sh(λ− µ+ η) eηh(λ−µ)

sh(λ− µ) e−ηh(λ+µ)
CN(µ)AN(λ)

− sh(η)

sh(λ− µ) e−ηh(λ+µ)
CN(λ)AN(µ) (2.2)

DN(λ)CN(µ) = sh(µ− λ+ η) eηh(µ−λ)

sh(µ− λ) e−ηh(µ+λ)
CN(µ)DN(λ)

− sh(η)

sh(µ− λ) e−ηh(µ+λ)
CN(λ)DN(µ) (2.3)

We should mention here thatCN(λ) is considered as a creation operator so
that anM-excitation eigenstate of the transfer matrix given by Eq. (1.12) would
be of the form

ÄM = CN(µ1)CN(µ2)CN(µ3) · · ·CN(µN)|0〉 (2.4)

where the vacuum state is being defined in the following manner:

|0〉 =
(

1

0

)
1

⊗
(

1

0

)
2

⊗ · · · ⊗
(

1

0

)
N

(2.5)

Application of AN(λ) to the stateÄM results in the following equation upon
using (2.2) repeatedly:

AN(λ)ÄM = aN(λ)
M∏

i=1

sh(λ− µi + η)

sh(λ− µi )
e2hηλÄM + unwanted terms (2.6)

where by a “unwanted terms” we designate all those terms which are not propor-
tional toÄM . Similar application ofDN(λ) to ÄM using Eq. (2.3) results in the
following:

DN(λ)ÄM = dN(λ)
M∏

i=1

sh(µi − λ+ η)

sh(µi − λ)
e2hηλ + unwanted terms (2.7)

In Eqs. (2.6) and (2.7)aN(λ) anddN(λ) are the eigenvalues ofAN(λ) and
DN(λ) when acting on|0〉. These eigenvalues may be determined by noting that
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in general

(TN(λ))ab =
2∑

a1,a2,...,aN−1=1

t (1)
aa1

(λ, ν1)t (2)
a1a2

(λ, ν2) · · · t (N)
aN−1b(λ, νN) (2.8)

wheret (k)
i j (λ, νk) refer to the partitioned submatrix ofR0k(λ, νk; η); that is we write

R0k(λ, νk; η) =
(

tk
11(λ, νk) tk

12(λ, νk)

tk
21(λ, νk) tk

22(λ, νk)

)
(2.9)

with

tk
11(λ, νk) =

(
eηh(λ−νk) 0

0 sh(λ−νk)
sh(λ−νk+η) e−ηh(λ+νk)

)

tk
12(λ, νk) =

(
0 0

sh(η)
sh(λ−νk+η) 0

)

tk
21(λ, νk) =

(
0 sh(η)

sh(λ−νk+η)

0 0

)

tk
22(λ, νk) =

( sh(λ−νk)
sh(λ−νk+η) eηh(λ+νk) 0

0 e−ηh(λ−νk)

)
(2.10)

Applying the definition (2.8) we find that

AN(λ)|0〉 =
(

N∏
k=1

eηh(λ−νk)

)
|0〉 = aN(λ)|0〉 (2.11)

DN(λ)|0〉 =
{

N∏
k=1

sh(λ− νk)

sh(λ− νk + η)
eηh(λ+νk)

}
|0〉 = dN(λ)|0〉 (2.12)

so thataN(λ) anddN(λ) can be read off easily.
From Eqs. (2.6) and (2.7) it is obvious thatÄM will be an eigenstate of

t(λ) ≡ tr(TN(λ)) if the unwanted terms vanish. The vanishing of the unwanted
terms leads to the Bethe Ansatz equations (BAEs) which determine the{µi }’s.
Under this condition one has

t(λ)ÄM = (AN(λ)+ DN(λ))ÄM

=
[

aN(λ)
M∏

i=1

sh(λ− µi + η)

sh(λ− µi )
e2ληh

+ dN(λ)
M∏

i=1

sh(µi − λ+ η)

sh(µi − λ)
e2ληh

]
ÄM (2.13)
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while the vanishing condition for the unwanted terms is the following set of coupled
equation:

aN(µ j )

dN(µ j )
=

M∏
i 6= j

sh(µi − µ j + η)

sh(µi − µ j − η)
, j = 1, 2,. . . , M (2.14)

From (2.11) and (2.12) we find that the ratio on the left is

aN(µ j )

dN(µ j )
=

N∏
k=1

sh(µ j − νk + η)

sh(µ j − ηk)
e−2ηνkh (2.15)

Hence the BAE finally assumes the following form:

N∏
k=1

sh(µ j − νk + η)

sh(µ j − ηk)
e−2ηνkh =

M∏
i=1,i 6= j

sh(µi − µ j + η)

sh(µi − µ j − η)
, j = 1, 2,. . . , M

(2.16)

Furthermore the energy eigenvalue of the transfer matrix is seen to be given by

3M (λ, νk) = e2ηλh

(
N∏

k=1

eηh(λ−νk)

)
M∏

i=1

sh(λ− µi + η)

sh(λ− µi )

+ e2ηλh

(
N∏

i=1

sh(λ− νk)

sh(λ− νk + η)
eηh(λ+νk)

)
M∏

i=1

sh(µi − λ+ η)

sh(µi − λ)
(2.17)

Equation (2.16) and (2.17) complete the Bethe Ansatz solution of the eigenvalue
problem:

t(λ)ÄM = 3MÄM

Analysis of the BAE itself is a nontrivial exercise which we shall not go into
here.

4. LONG-RANGE HAMILTONIAN

To deduce a family of Hamiltonians exhibiting long-range interaction we
shall consider the following eigenvalue problem:

Zk|Ä〉 =
M∏

l=1

ε(µl ∼ νk)|Ä〉 = ζk|Ä〉 (3.1)

where the state|Ä〉 is characterized by a set ofM quasi-momenta{µl }Ml=1 andZk

is defined as follows:

Zk = t(λ = νk, {ν}Np=1; η) (3.2)
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Recalling the definition oft(λ) as given by Eq. (1.12) we see that

Zk = tr0{R0N(νk, νN ; η) · · · R0k+1(νk, νk+1; η)

× P0k R0k−1(νk, νk−1; η) · · · R01(νk, ν1; η)} (3.3)

with

[Zk, Zl ] = 0 for all l , m (3.4)

by making use of Eq. (1.9). Furthermore it can be easily verified using (1.9) again
that

Zk|η=0 = IN ⊗ IN−1 · · · ⊗ I1 = I (3.5)

Differentiating Eq. (3.1) w.r.tη and settingη = 0 gives us(
∂Zk

∂η

)
|Ä〉 |η=0+ Zk

∂

∂η
|Ä〉 |η=0 =

(
∂

∂η

M∏
l=1

ε(µl ∼ νk)

)
|Ä〉 |η=0

+
M∏

l=1

ε(µl ∼ νk)
∂

∂η
|Ä〉 |η=0 (3.6)

Hence if we demand

M∏
l=1

ε(µl ∼ νk)|η=0 = 1 (3.7)

then by making use of Eq. (3.5) one finds that(
∂Zk

∂η

)
|Ä〉|η=0 =

(
∂

∂η

M∏
l=1

ε(µl ∼ νk)

)
|Ä〉|η=0 ≡ ξk|Ä〉 (3.8)

Now for small values of the quantization parameterη one finds that

R(λ, µ)→η→0 P[ I + ηr (λ, µ)+ 0(η)] (3.9)

ConsequentlyZk as defined by Eq. (3.3) can be shown to admit a power series
expansion inη so that

Zk = I + ηHk + 0(η) (3.10)

where

Hk = ∂Zk

∂η
|η=0 (3.11)

In view of Eq. (3.4) one concludes that [Hk, Hl ] = 0 so that Eq. (3.8) defines a ei-
genvalue problem for the commuting family of HamiltoniansHk(k = 1, 2,. . . ,N).
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The explicit evaluation ofZk from Eq. (3.4) can be performed following Hikami
et al. (1992) so that we shall only give the final result, namely

Zk = Rkk−1(νk, νk−1; η) · · · Rk1(νk, ν1; η)

× RkN(νk, νN ; η) · · · Rkk+1(νk, νk+1; η) (3.12)

so that

Hk =
N∑

j=16=k

∂Rkj

∂η
(νk, ν j ; η)|η=0 (3.13)

Using Eqs. (2.9) and (2.10) we can explicitly evaluateHk given above and find
that it may be expressed in terms of local spin operators in the form

Hk =
N∑

j 6=k

1

2sh(νk − ν j )

[
cosh(νk − ν j )

(
σ 3

k ⊗ σ 3
j − 1

)+ (σ+k ⊗ σ−j + σ−k ⊗ σ+j )
+ h(νk − ν j )sh(νk − ν j )

(
σ 3

k ⊗ σ 3
j + 1⊗ 1

)
+ h(νk + ν j )sh(νk − ν j )

(
1⊗ σ 3

j − σ 3
k ⊗ 1

)]
(3.14)

Notice should be taken of the extra terms involving the external magnetic
field h in (3.14); whenh = 0 we get back the basic result of Hikamiet al. (1992)
for XXZ spin chain.

To ensure that the eigenvalue problem given by Eq. (3.8) is well defined we
have to ensure that condition (3.7) is fulfilled. It is clear that the eigenvalue ofZk

when acting on theM-excitation state|Ä〉will be the same at that oft(λ) evaluated
atλ = νk. From Eq. (2.17) we find that

3M (λ = νk) = e2ηνkh

(
N∏

j=1

eηh(νk−ν j )

)
M∏

i=1

sh(νk − µi + η)

sh(νk − µi )

+ e2ηνkh

(
N∏

j=1

sh(νk − ν j )

sh(νk − ν j + η)
eηh(νk+ν j )

)

×
M∏

i=1

sh(µi − νk + η)

sh(µi − νk)
(3.15)

However the second term on the r.h.s. vanishes whenj = k, and so

3M (λ = νk) = e2ηνkh

(
N∏

j=1

eηh(νk−ν j )

)
M∏

i=1

sh(νk − µi + η)

sh(νk − µi )
(3.16)
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Notice once again appearance of terms involving the external magnetic field
in Eq. (3.16). Thus from Eqs. (3.16) and (3.1) we find that

M∏
l=1

ε(µl ∼ νk) = e2ηνkh

(
N∏

j=1

eηh(νk−ν j )

)
M∏

l=1

sh(νk − µl + η)

sh(νk − µl )
(3.17)

In view of the constraint expressed by Eq. (3.7) one can see immediately that
the r.h.s. of (3.17) reduces to unity whenη = 0. Thus we conclude that the eigen-
value problem given by Eq. (3.8) is well defined. The eigenvalue corresponding to
the HamiltonianHk can be easily deduced from Eq. (3.17) and is given by

ξk = h

{
2νk +

N∑
j=1

(νk − ν j )

}
+

M∑
l=1

coth(νk − µl ) (3.18)

Finally the new BAE determining theµl ’s is obtained by differentiating Eq. (2.16)
w.r.t. η and settingη = 0. This yields

N∑
k=1

[coth(µl − νk)− 2hνk] = 2
M∑

i 6= j

coth(µi − µl ) l = 1, 2,. . . , M (3.19)

From Eq. (3.14) we see that the inhomogenities{νk}Nk=1 appear as coordi-
nates in the expression for the HamiltonianHk. Moreover since the summation in
Eq. (3.14) is not confined to nearest neighbors the HamiltonianHk exhibits long-
range interactions in terms of the “coordinates”{νk}Nk=1. The external magnetic
field appears in the form of additional terms in the expression forHk. The energy
eigenvalue equation (3.18) and the new BAE (3.19) both involve the external mag-
netic field. In the absence of the magnetic field the above results reduce to those
derived earlier.

5. DISCUSSION

In our above analysis we have considered an asymmetric XXZ spin chain
placed in an external magnetic field. The effect of the magnetic field can be in-
corporated within the standard framework of Quantum Inverse Scattering method,
provided the spectral parameter is taken to be a two-component vector instead
of the usual form of a complex scalar. The additional component of the spectral
parameter takes into account the external magnetic field. We have deduced the
eigenvalue of the transfer matrix for such a spin system by employing the standard
technique of algebraic Bethe Ansatz, and have also deduced the corresponding
Bethe Ansatz equation for the eigenvalue momenta. Finally we have considered
an inhomogeneous version of this one-dimensional spin system in presence of
a magnetic field and have derived a family of mutually commuting long-range
Hamiltonian form it. This Hamiltonian explicitly contains terms involving the
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external magnetic field. The inhomogenity parameters take the role of pseudoco-
ordinates of the long-range Hamiltonians. We have also derived the eigenvalues
of these new Hamiltonians.
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