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A New Asymmetric Long-Range Model
and Algebraic Bethe Ansatz
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Anew integrable long-range model is derived from a new asymmigtriatrix recently
discussed by Bibikov in relation to a XXZ spin chain in an external magnetic field. The
algebraic Bethe Ansatz is used to derive the eigenvalues and equations for the eigen
momenta both for the usual and long-range model.

1. INTRODUCTION

In the theory of quantum integrable systems, quantum spin chains have always
occupied a special status, since they were amongst the first systems to be solved
exactly. Recently in a short note Bibikov (2000) has presentdg-aratrix for the
asymmetrical XXZ spin chain placed in an external magnetic field. The system
was also analyzed in Albertiet al.(1997). In terms of th&®-matrix the analysis of
such asystem can be accomplished using the algebraic Bethe AnsaRznidigix
obtained in Albertiniet al. (1997) presents certain novel features in the sense
that the spectral parameters on which tRenatrix depends are two-component
vectors. The inclusion of the external magnetic field within Bienatrix itself is
facilitated by assigning one component of this vector valued spectral parameter
to be proportional to the external magnetic field. In this communication we will
discuss the diagonalization problem for the asymmetric XXZ chain, which will
be useful in the derivation of a long-range integrable Hamiltonian system from
this spin system through the introduction of inhomogeneties. Such long-range
models were first obtained in Hikarat al. (1992) for the XXZ spin system in the
absence of external magnetic fields and have also been studied in Choudhury and
Chowdhury (1996) and de Vega (1984).
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2. FORMULATION

We consider thér-matrix presented in Bibikov (2000) in a slightly different
form as

RO, /1)
a(Aa, (1) @(ha—n2) 0 0 0
_ 0 b1, pq) €702 F12) shy 0
- 0 shy b(ry, pp) @10 2FH2) 0
0 0 0 a(rq, (1) e 1(2—n2)

(1.2
wherex = (A1, A2) andp = (1, po) are two-component vectors and
a(r1, n1) = sh(rs — p1 +n), b(r1, 1) = sh(r1 — pa)

n being a quantization parameter.
This R-matrix satisfies the Yang—Baxter equation (Koregiimal., 1993):

Rua(%, i) Rus(%, ) Ros(fi, ) = Roa(i, ) Rus(k, 1) Rua(h, 1) (1.2)
Itis interesting to note that Eq. (1.2) remains valid even after we introduce inho-
mogeneties;, fi, v (i = 1, 2) by means of the transformations> A — &, it —
it — B, v — v —y. The connection with the local Hamiltonian density of the
asymmetric XXZ spin chain in presence of an external magnetic field can be made

by employing the following reduction.
Let A = (&, Ah), ¥ = (v, vh), whereh is the magnetic field. Defining

RO, v) =L, v)

we have
L(x,v)
sh(x — v + ) et 0 0 0
_ 0 sh(x — v) e 7h(+v) shy 0
- 0 shy sh(x — v) eih®+v) 0
0 0 0 sh(x — v + ) e "hC¢—)
(1.3)
Now it can be shown that the local Hamiltonian density follows from
_ 0 chp
Hiit1 = shpL™*(h, v) =Lk, v) 1=y — — 4 (1.4)
oA 2
ch hnsh
= —n"i3 ® o + Ll (@*®1 +1®0%,)

2 2
+e "o ® ol + ot ® Oit1 (1.5)
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wherey = 2nv and we have writtei (A, v) in terms of local operators{, i1)
which are the 2« 2 Pauli matrices. As shown in Bibikov (2000) tlheoperator
satisfies the standard relation of Quantum Inverse Scattering Method:

RO LA, v) ® L, v) = L, v) ® L(, V)R, 1) (1.6)
where
R(, 1) = PR(A, 1) (1.7)

P being the usual permutation operator satisfy{§ ® y) = ¥ ® X, wherex, y €

C. Equation (1.6) will be of crucial importance in our subsequent analysis. First it
will be noticed that in Eqg. (1.6) plays the role of an auxillary parameter. Let us
now consider a one-dimensional lattice and assign to each site the operator

L(A, w) = Rok(h, s ) = m Rok(%, vi; ) (1.8)

where the indices 0 anidrefer to an auxiliary spacé, and a quantum spadé

at thekth lattice site respectively. Thus(x, ) as defined above is now defined
in the tensor product of two vector space Vg.® Vi. Notice that the parameter
has now become site-dependent. We mention two propertkeg Of, vk; n) which
will be frequently used in the following analysis.

(i) Rok(vk, vk; m) = Pog; (i) Rok(r, vin =0)= 1 (1.9
Next we define a transition matrix
Tn(A, (ki m) = Ron(A, vnim) - - - Rok(A, vk m) - - - Roa(A, vi; 1) (1.10)

In view of the local relation (1.6) the transition matrix defined above is also inter-
twined by R(%, w), i.e.

RO )T (o 1) @ T, (ks ) = i, (ks 1) @ T, {uicds m)R(L, 1)
(1.11)

As is well known the trace of the transition operator is a generator of the integrals
of motion and is called the transfer mattid), i.e.

t2, {udi m) = tro{Ron (A, v m) -+ - Rok(h, v m) -+ Roa(2, vism)} - (1.12)
From Eq. (1.11) it immediately follows that
[t(V), t(w)] =0 foralli, u (1.13)

We are now in a position to derive the eigenvalue of the transition matrix, using
algebraic Bethe Ansatz.
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3. ALGEBRAIC BETHE ANSATZ

Let us write the transition matrix in the following form:

76 i) = (&) o)) (2.)

Then from Eqg. (1.11) we pick up the following two commutation relations:

sh(r — p + n) en—m

AvICH() = S D e G
h
— h(u—2)
DNICH () = S ENE e (D)

sh(u — A) e=nh(u+2)

)
sh(u — A) e=nh(et2)

Cn(*)Dn(w) (2.3)

We should mention here th@ty (1) is considered as a creation operator so
that anM-excitation eigenstate of the transfer matrix given by Eq. (1.12) would
be of the form

Qm = Cn(11)Cn(12)Cn(13) - - - Cn(1en)I0) (2.4)

where the vacuum state is being defined in the following manner;

0-(e@eol), e

Application of Ay (1) to the statey results in the following equation upon
using (2.2) repeatedly:

A
Av(M)2m = an(r) 1_[ Srih(/\ L) " Qu 4+ unwanted terms  (2.6)

where by a “unwanted terms” we designate all those terms which are not propor-
tional to Q). Similar application ofDy(A) to 2y using Eqg. (2.3) results in the
following:

sh(ui — 2 +1n) g2k

+ unwanted terms 2.7
shu — ) @7)

M
Dn()2m =dv@) [ |
i=1

In Egs. (2.6) and (2.7an (1) anddy(X) are the eigenvalues dfy (1) and
Dn (1) when acting orj0). These eigenvalues may be determined by noting that
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in general

2
(Tn(A))ab = Z 8, v)t@ (0 v) - aN 1b(k VN) (2.8)

ar,a,...,an—1=1

whereti(jk)(k, vi) refer to the partitioned submatrix &y (A, vk; n); thatis we write

tiifl()‘! Vk) ti(z()h Vk)
Rok(A, vk; 1) = ( . } (2.9)
'[21()\, Vk) '[22()\, Vk)
with
‘ eﬂh()» V) 0
(%, v = ( _shO—v) _ enh(/\+w))
Sh(r—v+7)
tlz(A Vk) Z( _ shn) )
sh(i—ve+1n)
sh(n)
5,00, 1) _( S uk+n>)
sh(A—w) nh(A+vk)
K S € 0
(A, v) = (sh(A k+% enh(/\Vk)) (2.10)
Applying the definition (2.8) we find that
N
AN(1)I0) = (1"[ e"“‘“k’) 10) = an(2)I0) (2.11)
k=1

s =) e | )
Dn()I0) = {ﬂm e 10) = dn(2)]0) (2.12)

so thatay (1) anddy (1) can be read off easily.

From Egs. (2.6) and (2.7) it is obvious th@t, will be an eigenstate of
t(A) = tr(Tn (1)) if the unwanted terms vanish. The vanishing of the unwanted
terms leads to the Bethe Ansatz equations (BAEs) which determinguths.
Under this condition one has

t(A)2m = (An(2) + Dn(2))2m

[aN()»)H Sr‘iﬁ(k 'u'l:_ n)ez

+dy (/\)]_[Shé’;é Ii+)")e” ]QM (2.13)
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while the vanishing condition for the unwanted terms is the following set of coupled
equation:

_ M .
an(ui) _pyshui—pitm 5 oy (2.14)

dn(ui) — Lj shiui —uj —n)’

From (2.11) and (2.12) we find that the ratio on the left is

N
an(uj) Sh(kj — v+ 1) 2gun

= (2.15)
an(ug) 7 shlug —m)
Hence the BAE finally assumes the following form:
N M
Sh(ltj—vk-i-'?)e,znvkh: l—[ Sh(l/vi—ﬂj"‘n), i=12...M
o1 Shlwj —mw) i—1izj Shlwi —wj —n)
(2.16)

Furthermore the energy eigenvalue of the transfer matrix is seen to be given by

N M
. ho—w | T Sh: = i + )
Am(h, ) = e (L[le” * )E sh(x — i)

N M
7ih sh(h — v hgtw shipi — A +1n)
e (H e at ) .11 o= @1

Equation (2.16) and (2.17) complete the Bethe Ansatz solution of the eigenvalue
problem:

t(M)Qm = AmQm

Analysis of the BAE itself is a nontrivial exercise which we shall not go into
here.

4. LONG-RANGE HAMILTONIAN

To deduce a family of Hamiltonians exhibiting long-range interaction we
shall consider the following eigenvalue problem:

M

ZdQ) = [ e(w ~ w)I2) = &) (3.1)
1=1

where the statg2) is characterized by a set & quasi-momentg }; and Z,
is defined as follows:

Zi =t(h = v, {v}pogsm) (3.2)
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Recalling the definition of(1) as given by Eq. (1.12) we see that
Zy = tro{Ron (v, vn; ) - - - Rokga (Vi vki1s 1)
X Pok Rok—1(vks vk—1;1) - - - Roa(v, v1; m)} (3.3)
with
[Zk, 2] =0 foralll,m (3.4)

by making use of Eq. (1.9). Furthermore it can be easily verified using (1.9) again
that

Zp=o=IN®INn_1---® 11 =1 (3.5)
Differentiating Eq. (3.1) w.r.y and setting; = 0 gives us

32\ 1o Zi2 |92 01 ~ Q)
M)>nwk—umo %HWMvﬂlho

=1
'ﬂﬁw~m 1210 (36

Hence if we demand
M

[TeGu ~vdlymo=1 (3.7)

I=1
then by making use of Eq. (3.5) one finds that
dZx 3
— ) Q) ])=0 = ~ Q) = &R 3.8
(877)' M=o (anllls(m Uk))| M=o = §kl€2) (3.8)
Now for small values of the quantization parameteme finds that
R(x, 1) =40 P +nr (2, n) +0()] (3.9)

ConsequenthZy as defined by Eq. (3.3) can be shown to admit a power series
expansion im so that

Zv=1+ )’]Hk —+ 0(77) (310)
where
07y
H = —|,= 3.11
k 87) |n_0 ( )

In view of Eq. (3.4) one concludes thaty|, H] = 0 so that Eq. (3.8) defines a ei-
genvalue problem for the commuting family of Hamiltoniagfigk = 1, 2,...,N).
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The explicit evaluation oZy from Eq. (3.4) can be performed following Hikami
et al. (1992) so that we shall only give the final result, namely

Zx = Ra-1(v, vi—1;m) - - Ravi, va; )

X Ren(k, NG 1) - - - Rek1(Vis Vieras 1) (3.12)
so that
Hy = (v, vj; m)ly=0 (3.13)
S 9 !

Using Egs. (2.9) and (2.10) we can explicitly evaluategiven above and find
that it may be expressed in terms of local spin operators in the form

N
1 3 3 — —
Hy = %; m[cosh@k - vj)(ak ®o — 1) + (ak+ Qo + 0y ®aj+)
+ h(v — vj)sh(v — vj)(crk3 ® Uj3 +1® 1)
—i—h(l)k—i-l)j)Sh(vk— Uj)(l@Of—OE@l)] (3.14)

Notice should be taken of the extra terms involving the external magnetic
field hin (3.14); wherh = 0 we get back the basic result of Hikagtial. (1992)
for XXZ spin chain.

To ensure that the eigenvalue problem given by Eq. (3.8) is well defined we
have to ensure that condition (3.7) is fulfilled. It is clear that the eigenvalig of
when acting on thé1-excitation statéQ) will be the same at that af)) evaluated
atA = . From Eq. (2.17) we find that

i1 sh(u— pui)

J

N M
A = 1) = evakh ( enh(wv”) 1—[ Sh(Vk — Wi+ 77)
=1

N
4 lezvkh 1—[ Sh(Vk - VJ') e"h(”k+"l)
=1 Sh(vk — v+ 77)

M

l—[ sh(ui — vk + 1)

o= (3.15)

However the second term on the r.h.s. vanishes wherk, and so

N M
_ — g2mh ah(v—v;) M 3.16
An(h = w) (,Ule )H R (3.16)
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Notice once again appearance of terms involving the external magnetic field
in Eq. (3.16). Thus from Egs. (3.16) and (3.1) we find that

M N M
HS(MI ~ ) = X1 (1_[ e’7h(Uk_Vi)> 1_[ sh(vk — wi +n) (3.17)
j=1

=1 iz Shlvc— )

In view of the constraint expressed by Eg. (3.7) one can see immediately that
the r.h.s. of (3.17) reduces to unity wher= 0. Thus we conclude that the eigen-
value problem given by Eq. (3.8) is well defined. The eigenvalue corresponding to
the HamiltonianHy can be easily deduced from Eq. (3.17) and is given by

N M
& =h {2vk +) (- vj)} + ) cothlv — ) (3.18)
j=1 =1

Finally the new BAE determining the's is obtained by differentiating Eq. (2.16)
w.r.t. n and setting; = 0. This yields

N M

> “leoth(u — ) — 2hw] =23 “coth@i — ) 1=1,2,...,M (3.19)
k=1 i#]

From Eq. (3.14) we see that the inhomogenitiag_, appear as coordi-
nates in the expression for the Hamiltonidp Moreover since the summation in
Eq. (3.14) is not confined to nearest neighbors the HamiltoHjaexhibits long-
range interactions in terms of the “coordinatés}} ;. The external magnetic
field appears in the form of additional terms in the expressioifoThe energy
eigenvalue equation (3.18) and the new BAE (3.19) both involve the external mag-
netic field. In the absence of the magnetic field the above results reduce to those
derived earlier.

5. DISCUSSION

In our above analysis we have considered an asymmetric XXZ spin chain
placed in an external magnetic field. The effect of the magnetic field can be in-
corporated within the standard framework of Quantum Inverse Scattering method,
provided the spectral parameter is taken to be a two-component vector instead
of the usual form of a complex scalar. The additional component of the spectral
parameter takes into account the external magnetic field. We have deduced the
eigenvalue of the transfer matrix for such a spin system by employing the standard
technique of algebraic Bethe Ansatz, and have also deduced the corresponding
Bethe Ansatz equation for the eigenvalue momenta. Finally we have considered
an inhomogeneous version of this one-dimensional spin system in presence of
a magnetic field and have derived a family of mutually commuting long-range
Hamiltonian form it. This Hamiltonian explicitly contains terms involving the
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external magnetic field. The inhomogenity parameters take the role of pseudoco-
ordinates of the long-range Hamiltonians. We have also derived the eigenvalues
of these new Hamiltonians.
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